If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+27x-44=0
a = 35; b = 27; c = -44;
Δ = b2-4ac
Δ = 272-4·35·(-44)
Δ = 6889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6889}=83$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-83}{2*35}=\frac{-110}{70} =-1+4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+83}{2*35}=\frac{56}{70} =4/5 $
| -12=x+51 | | 4x-5+6x-10=0 | | 2a+4=3a+2=a | | 4.5n=58.5 | | 2x-7.5=-0.5x+5 | | x/3x−24=81 | | 4.9x^2+0.717x-3=0 | | 2-x=-13 | | 4(x+1)–3=4x+1 | | 6(1)-4y=10 | | 55=q+75 | | 3(x+2)–1=3x+1 | | 7v-2v=10 | | 6(x–1)=9(x+2)x=–8 | | -8x+27=10x-9 | | -40=m+3 | | n-21.92=-8.92 | | -10-4y=11+3y | | -10x+5=-85 | | 4+2x=-6+3x | | 2(x+5)=38 | | 5(2)+y=17 | | 19+b=30 | | 0.93*3=b | | 9+7j=6j | | 5x-3=8x-15 | | m+6/3=7 | | 7y+2=-4 | | a2-4a-3=0 | | 2x-2=5x-14 | | 105=8x | | x=4(3)-3 |